The 1 Every ideal I in $R=k\left[x_{1}, \cdots x_{n}\right]$ has a unique reduced Gris bree basis.

Scetck of proof
Start with any O.B., turn into a reduced GiB,

- Divide each $g \in G$ by i^{t} leading coefficient
\rightarrow wast to remove all elemis g in G whose initial monomial is not a minimal generated of $i n_{c}(J)$.
- For any pair $g_{1} g^{\prime} \in a_{n}$ if $r_{2}(g)=r n_{c}\left(g g^{\prime}\right)$ discard one of g, gl
- For giG use division alg. to compar the cenomider r of g divided by G and replace g by r

Computing $G_{n} B$
Thai (Division Algorithm). work in $R=K_{C}\left[x_{100 y} x_{n}\right]$. Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be an ordered list of polynomials in R
Every $f \in R$ can be writer as

$$
f=q_{1} f_{1}+\cdots+q_{3} f_{5}+\underbrace{r}_{L_{\text {remainder }}}
$$

when $q_{i} r \in R$ sit.
$r=0 \quad$ OR r is a k-liner combo of monomials, none of when are divisiable by any of

$$
i n_{c}\left(f_{1}\right), \ldots, n_{c}\left(f_{s}\right)
$$

Further if $q_{i} f_{i} \neq 0 \quad \Rightarrow \quad i n_{\nu}(f) \geq r n_{>}\left(q_{i} f_{i}\right)$

Ideal mem bership
It is clear it $r=0$ abow

$$
\Rightarrow \quad f=q_{1} f_{1}+\cdots+q_{3} f_{3} \Rightarrow f \in I=\left\langle f_{1},-f_{8}\right\rangle
$$

Honour for an arbilay gone. sot this only safficont, bat not nessory for $f \in I$.
Ex) Let $f_{1}=x y-1, f_{2}=y^{2}-1$ in $\left.k_{\operatorname{lax}}[x, y]\right]$
Divide $f=x y^{2}-x$ by $\left\{f_{1}, f_{2}\right\}$ gives

$$
x y^{2}-x={\underset{w}{q}}_{y}^{y} \cdot(x y-1)+{\underset{w}{q}}_{0}^{0} \cdot\left(y^{2}-1\right)+(\underbrace{-x+y}_{r})
$$

Divide f by $\left\{f_{2}, f_{1}\right\}$ gives

$$
x y^{2}-x=x\left(y^{2}-1\right)+0 \cdot(x y-1)+0
$$

we willie that if G is G.B., in any mon. cribs, the division algorithm ansuas if $f \in\langle 0\rangle$.
Prop Let $I \subseteq R=k_{[}\left[x_{1}, \cdots, d_{n}\right], G=\left\{g_{1}, \cdots g_{t}\right\}$ be a Gröbver basis of J. Given $f \in R$ there exists a unique $r \in R$ sit.

1) No term of r is divisible by any of

$$
\operatorname{inc}\left(g_{1}\right), \ldots, r_{n}\left(g_{z}\right)
$$

2) T here is $g \in I$ sot $f=g+r$

In purtivalar r is the remarador after division by G no matter order the elements of a ave listed $i n$.

Prot: By the division Alg an r satisfying 11,2$)$ exists.
Prove uniquas:
Suppose $f=g+r=g^{\prime}+r^{1} \quad$ Satisfying 1), 2)
$\Rightarrow \quad r-r^{\prime}=g^{\prime}-g \quad \subset I \quad{ }^{\prime}$ Since G.R.
If $r \neq r^{\prime} \Rightarrow \quad \operatorname{inc}\left(n-r^{\prime}\right) \in \operatorname{irc}(I)=\left\langle\operatorname{in}\left(g_{1}\right), \ldots, i n<\left(g_{t}\right)\right\rangle$
$\Rightarrow \quad \operatorname{irc}\left(g_{i}\right) \mid i n_{c}\left(r-r^{\prime}\right) \quad$ for sone g_{i}
Bat, by div alg, no term of $r, r l$ is dausatio. by any of $\ln _{2}\left(g_{1}\right), \ldots, \ln \left(g_{4}\right)$

$$
\therefore \quad \operatorname{lnc}\left(g_{i}\right) \nless i n_{L}\left(r-r_{\text {sin }}^{\prime}\right)
$$

$T_{\text {since }}+$ his mast be some monomial in roo n^{*}
cor Let $G=\left\{g_{1 / 0}, g_{t}\right\}$ be a G.B. for $I \subseteq K[x \mid, \ldots, x]^{d}$ an Ital, and $f \in K[x, y, n]$. We have $f \in I$ if the remainder on division of A by G is Zero.

Deff(LCM) Let $f, g \in K_{c}\left[x_{1}, \cdots, x_{n}\right]$ be ron-zeno and suppose that $\operatorname{ir} \angle(f)=x^{a}, \quad \operatorname{inc}(g)=x^{b}$
then $x^{\gamma}=\operatorname{lcm}(\operatorname{inc}(f), \operatorname{inc}(g))$, where $\gamma=\max \left(a_{i}, b_{i}\right)$

$$
L T(f)=L C \cdot \operatorname{in} L(f)
$$

Let $(s-p / y)$ The Se polynomial of $f, g \neq 0$ in $k[x, \cdots+w]$
is

$$
S(f, g)=\operatorname{lcm}(\operatorname{inc}(f), \operatorname{inc}(g)) \cdot\left(\frac{f}{L T(g)}-\frac{g}{L T(g)}\right)
$$

Thus "designed" to cancel lead perms
Def \mid Given a set $G=\left\{g_{1, m} g r\right\}$ and a poly f (all $r n K\left(x_{1}, x_{3} x_{2}\right]$) write $f \% G$ or $\operatorname{ran}(f, a)$ for the re mainer of dividing f by a.

Lamina $f_{1} g \in K_{C}[x, \ldots, x n]$ non-zwo. Then

$$
i n_{L}(s(f, g))<\operatorname{lcm}\left(\operatorname{in}(f), r n_{L}(g)\right) \text {. }
$$

Lemma* Suppose we he $\sum_{i=1}^{s} p_{i} \quad p_{i} \in k\left[x_{1, \ldots} x_{r}\right] \quad \operatorname{cnc}_{c}\left(p_{i}\right)=x^{\delta} \quad V_{i}$ If $\operatorname{irc}\left(\sum p_{i}\right)<x^{\delta}$ len $\sum p_{i}$ is a k-linear combo of $S\left(p_{i}, p_{j}\right)$
Further $\operatorname{rr}<\left(S\left(p_{i}, p_{j}\right)\right)<x^{\delta} \quad \forall i, j$.
Lem**) Let $c_{a}, c_{b} \in K, g_{a}, g_{b} \in K\left[x_{1 / s} \times n\right]$ nom -zero,
S uppose $\operatorname{in}_{c}\left(S\left(c_{a} x^{a} \cdot g_{a}, c_{b} x^{b} \cdot g_{b}\right)\right)=x^{\delta}$. Then ne has

$$
S\left(x^{a} g_{a}, x^{b} g b\right)=x^{\delta-\gamma} S\left(g_{a} ; g b\right)
$$

when $x^{\gamma}=\operatorname{lcm}\left(\operatorname{irc}\left(g_{a}\right), i n c\left(g_{b}\right)\right)$.
Thy (Brach tater criterion). Let $I \subseteq K_{c}\left[x_{1, \ldots}, x_{n}\right]$ be an ideal. Then $G=\left\{g_{1, \ldots}, g_{t}\right\}$, when $I=\left(g_{11}, 0 g_{t}\right)$, is a
$G r o ̈ b$ bor bass for I iff forall pairs ij the remainder $S\left(j i, g_{j}\right) \% G=0$.
proof \Rightarrow
If G is a G, R. than, since $S\left(g_{i}, g_{j}\right) \in I$ the remainder on div by a is zero.
ϵ
Now Suppoe $\quad S\left(g_{i}, g_{j}\right) \% G=0 \quad \forall i \neq j$
Let $f \in I$, mon-zere, show that $\operatorname{rnc}(f) \in\left\langle i r_{C}\left(g_{1}\right), \ldots i r_{C}\left(g_{t}\right)\right\rangle$
Write

$$
f=\sum_{i=1}^{\dagger} h_{i} g_{i} \quad, h_{i} \in K\left[x_{1, n}, x_{n}\right]
$$

Note that

$$
i n_{L}(f) \leq \max \left(i n_{c}\left(h_{i} g_{i}\right)\right)
$$

A mong all expressions $f=\sum$ higi preach one sit.

$$
x^{\delta}=\max \left(\operatorname{rnc}\left(h_{i} g_{i}\right)\right) \text { is minimal }
$$

$$
\therefore \quad \quad m_{c}(f) \leq x^{\delta}
$$

If $\operatorname{inc}(f)=\operatorname{inc}\left(h_{i} g_{i}\right)$ for some i

$$
\begin{array}{ll}
\Rightarrow \quad & \quad \operatorname{in}_{L}\left(g_{i}\right) \mid \operatorname{in}_{L}(f) \\
& \left.\therefore \quad \operatorname{in}(f) \in C \operatorname{inc}\left(s_{1}\right), \ldots y \operatorname{in}\left(g_{t}\right)\right) .
\end{array}
$$

Suppose irc $(f)<x^{\delta}$
$G_{o l}=u_{\text {se }}$ fact $S\left(g_{i}, g_{j}\right) \% G=0 \quad$ bisk to contradict minimality

$$
\begin{aligned}
f= & \sum_{i n_{C}\left(h_{i} g_{i}\right)=x^{\delta}}^{h_{i} g_{i}}+\sum_{\ln _{c}\left(h_{i} g_{i}\right)<x^{\delta}}^{1} h_{i} g_{i} \\
& =\sum_{i n\left(h_{i} j_{i}\right)=x^{\delta}}^{\operatorname{LT}\left(h_{i}\right) g_{i}}+\sum_{\ln ^{\ln \left(h_{g_{j}}\right)>x^{\delta}}\left(h_{i}-L T\left(h_{i}\right) g_{i}\right.}+\sum_{i n\left(k_{g_{j}}\right)<x^{\delta}}^{1} h_{i} g_{i}
\end{aligned}
$$

Let $\omega=\sum L T\left(h_{i}\right) g_{i}$

$$
\operatorname{in}\left(n_{i} y_{i}\right)=x^{8}
$$

inc are $\angle x^{\delta}$
Bat inc $(f) \subset x^{\delta} \quad b_{y}$ assumption

$$
\therefore \quad \ln (\omega)<x^{\delta}
$$

By Lemma* ω is a k-linear combination of S-polys $S\left(L T\left(h_{i}\right) g_{i}, L T\left(h_{j}\right) g_{j}\right)=x^{\delta-\delta_{i j}} S\left(g_{i}, g_{j}\right)$ η by Len ma **
whee $x^{\gamma i s}=\operatorname{fcm}\left(\operatorname{inc}\left(g_{i}\right), i n_{c}\left(g_{j}\right)\right)$
$\therefore \quad a$ is a $k-l$ in combo of $x^{\delta-\gamma_{i j}}\left(g_{i}, g_{j}\right)$, and by assumption $S\left(g_{i}, g_{j}\right) \% G=0$
$\therefore B y$ division Al_{g}

$$
S\left(g_{i}, g_{j}\right)=\sum A_{l} g_{l} \quad ; A_{l} \in K\left[x_{l,},+\frac{1}{}\right]
$$

and $\quad \operatorname{inc}\left(A_{l} g l\right) \leqslant i n_{c}\left(S\left(g_{i}, g_{j}\right)\right)$ when $A_{l} g_{g} \neq 0$
 sine $\left.\operatorname{inc}\left(S \operatorname{g}_{g_{i}} g_{j}\right)\right) \geq \operatorname{fcm}\left(i_{n_{c}}\left(g_{i}\right), i n_{c}\left(g_{j}\right)\right)$
us a k-linear combo of Begl_{l}
and $\quad i n_{c}\left(\beta_{l} g_{l}\right) \subset x^{\delta}$
$\therefore f$ is a k-linear combe of terms $\subset x^{\delta}$ concern entradizo minimality y of x^{δ},

Thu| (A scending Chain condition) let

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots
$$

be an a scending chain of ideals. in $k\left[x_{1}, \cdots, x_{n}\right]$
Then \exists an $N \geq 1$ set

$$
I_{N}=I_{N+1}=I_{N+1}=\cdots
$$

Proof Set $I=\bigcup_{i=1}^{\infty} I_{i}$ (check that this is an idea))
By the Hilbert basis the $I=\left\langle f_{1}, \ldots, f_{3}\right\rangle$ but each $f_{i} \in I_{j i}$ for sone $j_{i} \forall i$

$$
N=\max \left(j_{1}, \ldots, j_{s}\right)
$$

$\Rightarrow f_{i} \in I_{N} \quad \forall i$ since we an ascending chain

$$
\begin{aligned}
\therefore \quad I= & \left(f_{1}, \ldots, f_{s}\right) \subseteq I_{N} \subseteq \cdots \cdots I \\
& \Rightarrow I_{N} \subseteq I_{N+1}=I .
\end{aligned}
$$

Thu (Buchberger's Algorithm) Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \neq\{0\}$ in $k\left[x_{1}, \cdots, x_{n}\right]$. Then a Grö̈ bones basis for I can be computed in a finite number of steps by the following algorithm
Algorithm:

$$
\left[\begin{array}{l}
\text { Input: } F=\left\{f_{1, \ldots,} f_{-}\right\} \\
\text {outpat: } a G \text { röbror burs } G=\left(g_{1}, \ldots, g_{6}\right) \text { for I }
\end{array}\right.
$$ with $F S G$.

Procedure.

$$
\begin{aligned}
& G: F \\
& \text { Repeat:= true }
\end{aligned}
$$

while Report DO:

$$
G^{\prime}:=G
$$

For each pair $\{p, q\}, p \neq q$, in G^{\prime} Do:

$$
r=S(p, q) \% C_{n}^{\prime}
$$

IFrキ0 Then Gie GU\{r\}

$$
\text { If } a==a^{\prime} \text { Then (Repeati=false; Re turn Gi) }
$$

Proof Show $G \subseteq I$ at every step

$$
a=F \text { is c kay }
$$

when we en large G we add $S(p, q) \% G \quad, p, q \in I$

$$
\begin{aligned}
& \Rightarrow S(p, q) \in I \\
& \Rightarrow \in S(p, q) \% G \in I \\
\therefore G \cup \xi B \in I . &
\end{aligned}
$$

and accontaring $f_{1}, \ldots, f_{s} \Rightarrow I \subseteq\langle G\rangle$ and $G \in I$

$$
\therefore I=\langle G\rangle
$$

at allsteys
The alg. steps when $a=a^{\prime}$
manning $S(p, q) \% G^{\prime}=0 \quad \forall p, q$
$\therefore G_{n}$ is a G.B. by Buchbergers criterion.
\qquad End of Lecture \qquad
Rest of proof:
we mast glow the Alg terminates, want to use the A scending Chain Condition
At each step G consists of G^{\prime} ($=$ old G) together with non-zero remainders of S-polynomials of pairs in $\mathrm{G}^{\mathrm{\prime}}$, ,...

$$
\left\langle\operatorname{in}_{C}\left(G^{\prime}\right)\right\rangle \leq\left\langle\ln _{C}(G)\right\rangle
$$

Note that if $\left.G^{\prime} \neq G \quad \Rightarrow \quad \operatorname{lin}\left(G^{\prime}\right)\right) C^{b^{\text {snit }}}\left\langle\operatorname{inc}_{c}(G)\right)$

$$
\begin{aligned}
& \text { Since if } r=S(p, q) \% G^{\prime} \neq 0 \quad\left(p p, q \in G^{\prime}\right) \\
& \Rightarrow \quad \ln c\left(g^{\prime}\right) \nmid \ln n_{c}(n) \quad \forall g \in G^{\prime} \\
& \left.\therefore r_{c}(r) \&<\text { inc }\left(G^{\prime}\right)\right) \text { but } \\
& i n_{c}(r) \in\langle\operatorname{inc}(G)\rangle
\end{aligned}
$$

If we write $a^{\prime}, a^{\prime \prime}, \ldots, G^{(n)}, \ldots$ ck e for the ${ }^{\prime} G^{\prime \prime \prime}$ appearing in the loop. We hae an A sanding chain

$$
\left\langle\operatorname{inc}\left(a^{\prime}\right)\right\rangle \leq\left\langle\operatorname{in}_{c}\left(G^{\prime \prime}\right)\right\rangle \leq \cdots
$$

\therefore by $A C C$

$$
\begin{aligned}
& \left\langle\operatorname{in}\left\langle\left(G^{(a)}\right)\right\rangle=\left\langle\operatorname{in} n_{2}\left(G^{(a+1)}\right)\right\rangle \text { for move } n\right.
\end{aligned}
$$

\therefore The agoritin terminates to

