floating point numbers

May 20, 2020

[1]: restart

--loading configuration for package "FourTiTwo" from file
/home/hegland/.Macaulay2/init-FourTiTwo.m2

--loading configuration for package "Topcom" from file
/home/hegland/.Macaulay2/init-Topcom.m2

0.0.1 A lightweight but optimal implementation of floating point arithmetic

e the following code is for illustrative purposes and might still contain errors

dyadic fractions
e a floating point number x is a dyadic fraction, i.e. it is of the form

m

.ZU:?

where the mantissa m € Z and the exponent e € N
e the dyadic fractions D form a ring and one has

ZCcDCQCR

o here we implement dyadic fractions as an extension of Z with 1/2
o the ring of dyadic fractions is not a field

[1]: -- the ring of dyadic fractions
DF = ZZ[h]/(2%h-1)

ol = DF

ol : QuotientRing

[114]: -- generate a random element of DD
e = -random(10) -- exponent which is negative
m = random(100)-50 -- mantissa

<< e << endl;
x = m*h”e

7 2
ol14 =h +h

ol14 : DF
[117]: -- recover the mantissa m and exponent e from the dyadic fraction
er = (degree(x))_0
mr = x*27er
x — mrxh"er -- this should be zero
ol1l7 =0
0ol17 : DF

application of conversion functions

¢ the following function FQ maps dyadic fractions to rational numbers
— with this one can apply any function on rational numbers to dyadic fractions, the result
is a rational number
e the function FR maps dyadic fractions to real numbers
— this might give unexact results
— this is useful for printing results

[120]: -- convert dyadic numbers to QQ and RR
FQ = map(QQ,DF,{h=>1/2}) -- maps DF to QQ and h maps to 1/2
FR = map(RR,DF,{h=>1/2}) -- maps DF to QQ and h maps to 1/2
KK"x = " <K<K x <K<K " =" << FQ(x) <<" = "<< FR(x) << endl;
7 2 33
x=h +h =--—-= ,257812
128

floating point numbers

e the dyadic numbers are dense in R like Q
e they admit a convenient approximation which is implemented as a rounding function

pr:Q—D

e the parameter t controls the precision of the approximation
e the range of p; is the set of floating point numbers F and one has

{neZ|n|<2'}CFCD

e more specifically
F = {m,2°||m| < 2", where m,e € Z}

o this is a slight idealisation as in practice e is considered to be in a (sufficiently large) subset
of Z

e Note: F is not a ring! Even the sum of two floating point numbers is typically not a floating
point number

[122]: -- round rationals to dyadic numbers (output=dyadic fractions)
-- t = precision parameter (as for RR)

rho = (x,t,DF) -> (

if == 0 then return O_DF

else if x > 0 then (
m = x; f=1_DF,;
while m < 27(t-1) do (m=2*m; f=hx*f);
while m >= 27t do (m=m/2; f = 2xf);
return round (m)*f)

else return -rho(-x,t,h))

FR(rho(1/3,53,DF))-1/3 -- same as for floating point RR

0122 = -1.85037170770859e-17

0122 : RR (of precision 53)

lifting functions defined on D to F

e simple formula for unary functions

fe(x) = p(E(fp(x))

e this is an approximation
e the same for binary functions

fr(z,y) = p(E(fp(z,9)))

e here F is the embedding of D into Q, i.e., the function FQ from above
e one could also implement the rounding function on ID instead of Q

[131]: t 4
UF = f -> (x -> rho(FQ(f(x)),t,DF)) -- unary functions f
BF = f -> ((x,y) -> rho(FQ(f(x,y)),t,DF))-- binary functions f

x = rho(1/3, t, DF) -- rho incurs an error

y = rho(1/4, t, DF) -- rho incurse an error

errplus = FR((BF(plus)) (x,y) - (x+y)) -- BF(plus) incurs an error
<< "error in addition of 1/3+1/4 = "<< errplus << endl;

<< "sum of errors in approx of 1/3 and 1/4 ="<< FR(x+y)-(1/3+1/4) <<endl;

error in addition of 1/3+1/4 = .03125

sum of errors in approx of 1/3 and 1/4 =.0104167

	A lightweight but optimal implementation of floating point arithmetic

