floating point numbers

May 20, 2020

[1]: restart

--loading configuration for package "FourTiTwo" from file /home/hegland/.Macaulay2/init-FourTiTwo.m2 --loading configuration for package "Topcom" from file /home/hegland/.Macaulay2/init-Topcom.m2

0.0.1 A lightweight but optimal implementation of floating point arithmetic

• the following code is for illustrative purposes and might still contain errors

dyadic fractions

• a floating point number x is a **dyadic fraction**, i.e. it is of the form

$$x = \frac{m}{2^e}$$

where the mantissa $m \in \mathbb{Z}$ and the exponent $e \in \mathbb{N}$

• the dyadic fractions $\mathbb D$ form a ring and one has

$$\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$$

- here we implement dyadic fractions as an extension of \mathbb{Z} with 1/2
- the ring of dyadic fractions is not a field

o1 = DF

o1 : QuotientRing

```
[114]: -- generate a random element of DD
e = -random(10) -- exponent which is negative
m = random(100)-50 -- mantissa
<< e << endl;
x = m*h^e</pre>
```

7

```
7 2
o114 = h + h
```

o114 : DF

[117]: -- recover the mantissa m and exponent e from the dyadic fraction
 er = (degree(x))_0
 mr = x*2^er
 x - mr*h^er -- this should be zero

```
0117 = 0
0117 : DF
```

application of conversion functions

- the following function FQ maps dyadic fractions to rational numbers
 - with this one can apply any function on rational numbers to dyadic fractions, the result is a rational number
- the function FR maps dyadic fractions to real numbers
 - this might give unexact results
 - this is useful for printing results

$$7$$
 2 33
 $x = h + h = --- = .257812$
 128

floating point numbers

- the dyadic numbers are dense in \mathbb{R} like \mathbb{Q}
- they admit a convenient approximation which is implemented as a rounding function

$$\rho_t:\mathbb{O}\to\mathbb{D}$$

- the parameter t controls the precision of the approximation
- the range of ρ_t is the set of floating point numbers \mathbb{F} and one has

$${n \in \mathbb{Z} \mid |n| < 2^t} \subset \mathbb{F} \subset \mathbb{D}$$

• more specifically

$$\mathbb{F} = \{ m, 2^e \mid |m| < 2^t, \text{ where } m, e \in \mathbb{Z} \}$$

- this is a slight idealisation as in practice e is considered to be in a (sufficiently large) subset of \mathbb{Z}
- Note: F is not a ring! Even the sum of two floating point numbers is typically not a floating point number

```
[122]: -- round rationals to dyadic numbers (output=dyadic fractions)
-- t = precision parameter (as for RR)

rho = (x,t,DF) -> (
    if x == 0 then return 0_DF
    else if x > 0 then (
        m = x; f=1_DF;
        while m < 2^(t-1) do (m=2*m; f=h*f);
        while m >= 2^t do (m=m/2; f = 2*f);
        return round(m)*f)
    else return -rho(-x,t,h))

FR(rho(1/3,53,DF))-1/3 -- same as for floating point RR
```

```
o122 = -1.85037170770859e-17
o122 : RR (of precision 53)
```

lifting functions defined on $\mathbb D$ to $\mathbb F$

• simple formula for unary functions

$$f_{\mathbb{F}}(x) = \rho(E(f_{\mathbb{D}}(x)))$$

- this is an approximation
- the same for binary functions

$$f_{\mathbb{F}}(x,y) = \rho(E(f_{\mathbb{D}}(x,y)))$$

- here E is the embedding of \mathbb{D} into \mathbb{Q} , i.e., the function FQ from above
- one could also implement the rounding function on $\mathbb D$ instead of $\mathbb Q$

```
[131]: t = 4
UF = f \rightarrow (x \rightarrow rho(FQ(f(x)), t, DF)) \rightarrow unary functions f
BF = f \rightarrow ((x,y) \rightarrow rho(FQ(f(x,y)), t, DF)) \rightarrow binary functions f
x = rho(1/3, t, DF) \rightarrow rho incurs an error
y = rho(1/4, t, DF) \rightarrow rho incurse an error
errplus = FR((BF(plus))(x,y) \rightarrow (x+y)) \rightarrow BF(plus) incurs an error
<< "error in addition of 1/3+1/4 = "<< errplus << endl;
<< "sum of errors in approx of 1/3 and 1/4 = "<< FR(x+y) - (1/3+1/4) << endl;
```

error in addition of 1/3+1/4 = .03125 sum of errors in approx of 1/3 and 1/4 = .0104167