
rounding_errors

May 20, 2020

[1]: restart

--loading configuration for package "FourTiTwo" from file
/home/hegland/.Macaulay2/init-FourTiTwo.m2
--loading configuration for package "Topcom" from file
/home/hegland/.Macaulay2/init-Topcom.m2

0.1 Rounding

One of the challenges of rational arithmetic is that the numerators and denominators can grow
strongly during computations. One way to control this growth uses approximate computations and
a rounding function. The rounding function is a real function and its range is the set Ft of floating
point numbers, a subset of the ring of dyadic fractions (aka dyadic rationals).

Dyadic fractions are the extension Z[1/2] of the ring of integers by the fraction 1
2 . Any dyadic

fraction can be (non-uniquely) represented by a mantissa m ∈ Z and an exponent e ∈ N as

x = m 2−e.

The subset of dyadic fractions with e = 0 is the set of integers. One thus has

Z ⊂ Z[1/2] ⊂ Q.

Like the rationals the dyadic fractions are dense in the set of real numbers. While they are not a
field, they require around half the storage required for a rational number as the exponent typically
is much smaller and thus has much less decimal digits than the denominator of a fraction.

The set of floating point numbers Ft is obtained by limiting the range of the mantissa:

Ft = {0} ∪ {m 2e | 2t−1 ≤ |m| < 2t, e,m ∈ Z}.

This representation of the floating point numbers is called “normalised”. It is unique. The set of
floating point numbers is not a ring and has one accumulation point 0. The set of floating point
numbers contains a subset of the set of integers (not all of them) and is a subset of the set of dyadic
fractions.

• The set Ft contains all integers between −2t and 2t.

Proof: Choosing e = 0 on sees that it contains the integers between 2t−1 and 2t and e =
−1...− (t− 1) revealls that all the positive integers less than 2t−1 are also contained. Finally
the set is symmetric and contains 0.

1

• Let Z2t+1 = {−2t−1, . . . , 2t−1}. Then

Ft = {0} ∪
∪
e∈Z

2eZ2t+1+1.

This leads to representations of the floating point numbers which are not unique.

• Consequently 2Ft = Ft.

The rounding function ρt : R → Ft is based on a rounding function ρ0 : R → Z which is provided
by Macaulay. This function returns the closest integer to any given real argument x. In particular,
this function satisfies ρ0(x) = 0 if x ∈ [0, 1/2) and ρ0(x) = 1 if x ∈ [1/2, 1).

Now let x = y 2e for positive x ∈ R be such that y ∈ [2t−1, 2t). (Like the normalised floating point
representation, this representation of a positive real number is unique.) Then we define ρt(x) to be

ρt(x) = ρ0(y) 2
e.

This representation is not normalised if ρ0(y) = 2t. Finally we set ρt(0) = 0 and ρt(−x) = −ρt(x).

Then ρt has the following properties:

• ρt(2
sx) = 2sρt(x) for any s ∈ Z.

For example one has ρ3(7.1) = 7 as 7.1 ∈ [4, 8) thus 7.1 = 7.1 ∗ 20. Then 3.55 = 7.1 ∗ 2−1

and thus ρ3(7.1/2) = 7/2. The rounding function ρ0 does not satisfy this property in general.
One has ρ0(7.1) = 7 ̸= 2 ∗ ρ0(3.55) = 8.

The property follows directly from the uniqueness of the representation of real positive num-
bers as x = z 2e with z ∈ [2t−1, 2t).

• For all x ̸= 0 one has
|ρt(x)− x|

|x|
≤ 2−t.

Proof: As in the definition let x = y2e where 2t−1 ≤ |y| < 2t. Substituting the definition of
ρt(x) one then has

|ρt(x)− x|
|x|

=
|ρ0(y)− y|

|y|
As the rounding error of ρ0 satisfies

|ρ0(y)− y| ≤ 1

2

and as |y| ≥ 2t−1 one gets the claimed inequality. QED

Thus one has a bound for the relative error (the “number of digits”) in contrast to ρ0 which
has a bounded absolute error of 1/2.

We can now rewrite the error bound as

ρt(x)− x = δx

or
ρt(x) = (1 + δ)x

for some real number δ with |δ| ≤ 2−t.

2

0.1.1 An algebraic model for uncertainty

• the following code is for illustrative purposes and might contain (coding) errors

[2]: -- choose the ring for your computations
R = QQ -- rational numbers
Rd = R[delta_1..delta_4] -- delta_i parameters with uncertain value

o2 = Rd

o2 : PolynomialRing

[6]: -- the ring for computations with uncertainty
-- here we consider affine polynomials of degree one
nu = numgens Rd
Lu = flatten(for i from 0 to nu-1 list

(for j from i to nu-1 list Rd_i*Rd_j))
Iu = ideal(Lu)
Ru = Rd/Iu

o6 = Ru

o6 : QuotientRing

[7]: -- a random uncertain expression
x = random(R) + sum(for i from 0 to nu-1 list Rd_i*random(R))

3 10 4
o7 = -delta + delta + --delta + -delta + 10

2 1 2 7 3 9 4

o7 : Rd

[140]: -- the expected value
mu = coefficient(1_Rd,x)
err = x - mu
<< "expected value = " << promote(mu,RR) << endl;

-- the variance (uncertain variables are N(0,eps^2))
var = sum(for i from 0 to nu-1 list (coefficient(Rd_i,x))^2)
<< "variance factor = " << promote(var,RR) << endl;

-- the maximal error
--errmax = max(for i from 0 to nu-1 list abs(C_0_i))
errmax = max(for i from 0 to nu-1 list abs(coefficient(Rd_i,x)))

3

<< "max error factor = " << promote(errmax,RR) << endl;

expected value = 10

variance factor = 5.48835

max error factor = 1.5

[122]: -- the rounding function which creates uncertainty

rho = (x,t,DF) -> (
if x == 0 then return 0_DF
else if x > 0 then (

m = x; f=1_DF;
while m < 2^(t-1) do (m=2*m; f=h*f);
while m >= 2^t do (m=m/2; f = 2*f);
return round(m)*f)

else return -rho(-x,t,h))

FR(rho(1/3,53,DF))-1/3 -- same as for floating point RR

o122 = -1.85037170770859e-17

o122 : RR (of precision 53)

lifting functions defined on D to F

• simple formula for unary functions

fF(x) = ρ(E(fD(x))

• this is an approximation
• the same for binary functions

fF(x, y) = ρ(E(fD(x, y)))

• here E is the embedding of D into Q, i.e., the function FQ from above
• one could also implement the rounding function on D instead of Q

[131]: t = 4
UF = f -> (x -> rho(FQ(f(x)),t,DF)) -- unary functions f
BF = f -> ((x,y) -> rho(FQ(f(x,y)),t,DF))-- binary functions f

x = rho(1/3, t, DF) -- rho incurs an error
y = rho(1/4, t, DF) -- rho incurse an error
errplus = FR((BF(plus))(x,y) - (x+y)) -- BF(plus) incurs an error
<< "error in addition of 1/3+1/4 = "<< errplus << endl;
<< "sum of errors in approx of 1/3 and 1/4 ="<< FR(x+y)-(1/3+1/4) <<endl;

4

error in addition of 1/3+1/4 = .03125

sum of errors in approx of 1/3 and 1/4 =.0104167

5

	Rounding
	An algebraic model for uncertainty

