# rounding\_errors

May 20, 2020

## [1]: restart

--loading configuration for package "FourTiTwo" from file /home/hegland/.Macaulay2/init-FourTiTwo.m2 --loading configuration for package "Topcom" from file /home/hegland/.Macaulay2/init-Topcom.m2

### 0.1 Rounding

One of the challenges of rational arithmetic is that the numerators and denominators can grow strongly during computations. One way to control this growth uses approximate computations and a rounding function. The rounding function is a real function and its range is the set  $\mathbb{F}_t$  of floating point numbers, a subset of the ring of dyadic fractions (aka dyadic rationals).

Dyadic fractions are the extension  $\mathbb{Z}[1/2]$  of the ring of integers by the fraction  $\frac{1}{2}$ . Any dyadic fraction can be (non-uniquely) represented by a mantissa  $m \in \mathbb{Z}$  and an exponent  $e \in \mathbb{N}$  as

$$x = m \, 2^{-e}$$
.

The subset of dyadic fractions with e = 0 is the set of integers. One thus has

$$\mathbb{Z} \subset \mathbb{Z}[1/2] \subset \mathbb{Q}.$$

Like the rationals the dyadic fractions are dense in the set of real numbers. While they are not a field, they require around half the storage required for a rational number as the exponent typically is much smaller and thus has much less decimal digits than the denominator of a fraction.

The set of floating point numbers  $\mathbb{F}_t$  is obtained by limiting the range of the mantissa:

$$\mathbb{F}_t = \{0\} \cup \{m \ 2^e \mid 2^{t-1} \le |m| < 2^t, \ e, m \in \mathbb{Z}\}.$$

This representation of the floating point numbers is called "normalised". It is unique. The set of floating point numbers is not a ring and has one accumulation point 0. The set of floating point numbers contains a subset of the set of integers (not all of them) and is a subset of the set of dyadic fractions.

• The set  $\mathbb{F}_t$  contains all integers between  $-2^t$  and  $2^t$ .

Proof: Choosing e = 0 on sees that it contains the integers between  $2^{t-1}$  and  $2^t$  and e = -1...-(t-1) revealls that all the positive integers less than  $2^{t-1}$  are also contained. Finally the set is symmetric and contains 0.

• Let  $\mathbb{Z}_{2^t+1} = \{-2^{t-1}, \dots, 2^{t-1}\}$ . Then

$$\mathbb{F}_t = \{0\} \cup \bigcup_{e \in \mathbb{Z}} 2^e \mathbb{Z}_{2^{t+1} + 1}.$$

This leads to representations of the floating point numbers which are not unique.

• Consequently  $2\mathbb{F}_t = \mathbb{F}_t$ .

The rounding function  $\rho_t : \mathbb{R} \to \mathbb{F}_t$  is based on a rounding function  $\rho_0 : \mathbb{R} \to \mathbb{Z}$  which is provided by Macaulay. This function returns the closest integer to any given real argument x. In particular, this function satisfies  $\rho_0(x) = 0$  if  $x \in [0, 1/2)$  and  $\rho_0(x) = 1$  if  $x \in [1/2, 1)$ .

Now let  $x = y 2^e$  for positive  $x \in \mathbb{R}$  be such that  $y \in [2^{t-1}, 2^t)$ . (Like the normalised floating point representation, this representation of a positive real number is unique.) Then we define  $\rho_t(x)$  to be

$$\rho_t(x) = \rho_0(y) \, 2^e.$$

This representation is not normalised if  $\rho_0(y) = 2^t$ . Finally we set  $\rho_t(0) = 0$  and  $\rho_t(-x) = -\rho_t(x)$ . Then  $\rho_t$  has the following properties:

•  $\rho_t(2^s x) = 2^s \rho_t(x)$  for any  $s \in \mathbb{Z}$ .

For example one has  $\rho_3(7.1) = 7$  as  $7.1 \in [4, 8)$  thus  $7.1 = 7.1 * 2^0$ . Then  $3.55 = 7.1 * 2^{-1}$  and thus  $\rho_3(7.1/2) = 7/2$ . The rounding function  $\rho_0$  does not satisfy this property in general. One has  $\rho_0(7.1) = 7 \neq 2 * \rho_0(3.55) = 8$ .

The property follows directly from the uniqueness of the representation of real positive numbers as  $x = z 2^e$  with  $z \in [2^{t-1}, 2^t)$ .

• For all  $x \neq 0$  one has

$$\frac{|\rho_t(x) - x|}{|x|} \le 2^{-t}.$$

Proof: As in the definition let  $x = y2^e$  where  $2^{t-1} \le |y| < 2^t$ . Substituting the definition of  $\rho_t(x)$  one then has

$$\frac{|\rho_t(x) - x|}{|x|} = \frac{|\rho_0(y) - y|}{|y|}$$

As the rounding error of  $\rho_0$  satisfies

$$|\rho_0(y) - y| \le \frac{1}{2}$$

and as  $|y| \ge 2^{t-1}$  one gets the claimed inequality. QED

Thus one has a bound for the relative error (the "number of digits") in contrast to  $\rho_0$  which has a bounded absolute error of 1/2.

We can now rewrite the error bound as

$$\rho_t(x) - x = \delta x$$

or

$$\rho_t(x) = (1+\delta)x$$

for some real number  $\delta$  with  $|\delta| \leq 2^{-t}$ .

#### 0.1.1 An algebraic model for uncertainty

• the following code is for illustrative purposes and might contain (coding) errors

```
[2]: -- choose the ring for your computations
      R = QQ -- rational numbers
      Rd = R[delta_1..delta_4] -- delta_i parameters with uncertain value
      o2 = Rd
      o2 : PolynomialRing
 [6]: -- the ring for computations with uncertainty
      -- here we consider affine polynomials of degree one
      nu = numgens Rd
      Lu = flatten(for i from 0 to nu-1 list
          (for j from i to nu-1 list Rd_i*Rd_j))
      Iu = ideal(Lu)
      Ru = Rd/Iu
      o6 = Ru
      o6 : QuotientRing
 [7]: -- a random uncertain expression
      x = random(R) + sum(for i from 0 to nu-1 list Rd_i*random(R))
                              10
      o7 = -delta + delta + --delta + -delta + 10
             1
                     2 7 3 9
      o7 : Rd
[140]: -- the expected value
      mu = coefficient(1_Rd,x)
      err = x - mu
      << "expected value = " << promote(mu,RR) << endl;</pre>
       -- the variance (uncertain variables are N(0,eps^2))
      var = sum(for i from 0 to nu-1 list (coefficient(Rd_i,x))^2)
      << "variance factor = " << promote(var,RR) << endl;</pre>
      -- the maximal error
      --errmax = max(for i from 0 to nu-1 list abs(C_0_i))
      errmax = max(for i from 0 to nu-1 list abs(coefficient(Rd_i,x)))
```

```
</ "max error factor = " << promote(errmax,RR) << endl;

expected value = 10

variance factor = 5.48835

max error factor = 1.5

[122]: -- the rounding function which creates uncertainty

rho = (x,t,DF) -> (
    if x == 0 then return 0_DF
    else if x > 0 then (
        m = x; f=1_DF;
        while m < 2^(t-1) do (m=2*m; f=h*f);
        while m >= 2^t do (m=m/2; f = 2*f);
        return round(m)*f)
    else return -rho(-x,t,h))

FR(rho(1/3,53,DF))-1/3 -- same as for floating point RR
```

o122 = -1.85037170770859e-17

o122 : RR (of precision 53)

## lifting functions defined on $\mathbb D$ to $\mathbb F$

• simple formula for unary functions

$$f_{\mathbb{F}}(x) = \rho(E(f_{\mathbb{D}}(x)))$$

- this is an approximation
- the same for binary functions

$$f_{\mathbb{F}}(x,y) = \rho(E(f_{\mathbb{D}}(x,y)))$$

- here E is the embedding of  $\mathbb{D}$  into  $\mathbb{Q}$ , i.e., the function FQ from above
- one could also implement the rounding function on  $\mathbb D$  instead of  $\mathbb Q$

```
[131]: t = 4

UF = f -> (x -> rho(FQ(f(x)),t,DF)) -- unary functions f

BF = f -> ((x,y) -> rho(FQ(f(x,y)),t,DF))-- binary functions f

x = rho(1/3, t, DF) -- rho incurs an error

y = rho(1/4, t, DF) -- rho incurse an error

errplus = FR((BF(plus))(x,y) - (x+y)) -- BF(plus) incurs an error

<< "error in addition of 1/3+1/4 = "<< errplus << endl;

<< "sum of errors in approx of 1/3 and 1/4 ="<< FR(x+y)-(1/3+1/4) <<endl;
```

error in addition of 1/3+1/4 = .03125 sum of errors in approx of 1/3 and 1/4 = .0104167